JOURNAL OF COMPUTATIONAL PHYsICS 120, 231-247 (1995}

The Darwin Direct Implicit Particle-in-Cell (DADIPIC)} Method for
Simulation of Low Frequency Plasma Phenomena*

MaTttuew R, Gissons anD Dennis W, HEwert

Plasma Physics Research Instinite, Lawrence Livermore National Laboratory, Livermore, California 94550

Received September 2, 1994; revised February 1, 1995

We describe a new algorithm for simulating low frequency, Kinetic
phenomena in plasmas. Darwin direct implicit particle-in-cell
(DADIPIC), as its name implies, is a combination of the Darwin
and direct implicit methods. Through the Darwin method the
hyperbolic Maxwell's equations are reformulated into a set of
elliptic eguations. Propagating light waves do not exist in the
formulation so the Courant constraint on the time step is elimi-
nated. The direct implicit method is applied only to the electrostatic
field with the result that electrostatic plasma oscillations do not
have to be resolved for stability. With the elimination of these
constraints spatial and temporal discretization can be much larger
than that possible with explicit, electrodynamic PIC. We discuss
the algorithms for pushing the particles and solving for the fields
in 2D cartesian geometry. We also detail boundary conditions for
conductors and dielectrics. Finally, we present two test cases,
electron cyclotron waves and collisionless heating in inductively
coupled plasmas. For these test cases DADIPIC shows agreement
with analytic kinetic theory and good energy conservation
characteristics. © 1995 Academic Press, Inc.

I. INTRODUCTION

We have developed a new algorithm, the Darwin direct im-
plicit particle-in-cell (DADIPIC) method, to simulate kinetic,
low frequency phenomena in plasmas. We have found that this
algorithm, which combines the features of direct implicit PIC
[1] with the streamline Darwin field method [2], provides a
flexible, robust alternative to the implicit, fully electromagnetic
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field models. We have implemented DADIPIC in a code which
functions in a two-dimensional x—z region with all three compo-
nents of the particle velocities, the electric field, and the mag-
netic field. Internal structures in the simulation region may be
conductors or dielectrics, can be set at desired potentials, and
driven with specified currents.

Before delving into the specifics of DADIPIC, a review of
particle simulation of plasmas will provide a basis for discussion
of the differences, advantages, and limitations of the new algo-
rithm compared to other plasma simulation methods. Since
plasma phenomena in many cases involve nonlinear effects
and requires boundaries which are not amenable to analytic
solutions, computer codes are invaluable in the simulation of
plasma. Particte-in-cell (PIC) simulation is a proven way kinet-
ically modeling the kinetic behaviour of a plasma with a number
of simulation particles. Each particle has its own position, x,
and velocity, v, which change according to the electromagnetic
forces on the particles. The field quantities, E, and B, are stored
on the grid and are advanced according to Maxwell's equations.

The typical time cycle has the following four steps: (1)
interpolate fields from the grid to the particles to find the particle
forces, (2) integrate the particle equations of motion, (3) interpo-
late particle quantities to the grid to find the field sources, and
(4) integrate the field equations using these source terms. The
main differences between PIC codes come down to methods
of integrating the particle equations of motion, methods of
solving for the fields, interpolation of particle and field quanti-
ties, and boundary conditions. The choice of methods is driven
by the need to retain only the plasma properties contributing
to the phenomena being studied.

The most straightforward and the computationally quickest
individual time step simply involves the explicit finite differ-
ence formulation of the equations of motion and Maxwell’s
equations. This provides a way to carry out the time advance
of the particles and fields in steps (2) and (4) of the time cycle.
With this explicit formulation we ratain all of the electromag-
netic and course-grain kinetic behaviour of the plasma. How-
ever, as with any finite difference advance of a hyperbolic set
of equations, we run into constraints on the spactat and temporal
discretization in order to avoid instability, cAx/Ar << 1 and
w, A < 2,
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A. Low Frequency, Kinetic Phenomena

One of the difficulties in simulating plasmas lies in the enor-
mous disparity between the fundamental scale lengths of a
plasma and the scale lengths of the phenomena of interest. The
fundamental parameters involve the Debye length, the plasma
frequency, and the propagation time of electromagnetic waves.
Reduced physics models such as fluid algorithms would allow
the computationalist to ignore the constraints imposed by these
fundamental parameters, but in many cases the kinetic proper-
ties of the plasma are intimately involved in the transport of
energy and particles. Explicit electrodynamic PIC would cor-
rectly model this physics, but the discretization in space and
time required due to the constraints on the algorithm is often
prohibitive. The problems can easily demand more storage and
speed than present computers can provide.

The objective becomes to create models which can ignore the
fundamental constraints without eliminating relevant plasma
properties. Properties to retain include: kinetic effects such as
collisionless damping of low frequency waves and nonanalytic
particle velocity distributions, electrostatic as well as magneto-
inductive fields, finite electron mass effects, and nonlinear pro-
cesses.

Two examples of low frequency, kinetic phenomena are mag-
netic reconnection and plasma processing. Magnetic reconnec-
tiont is, as its name implies, the breaking and reconnection of
magnetic field lines in resistive media. This process itself exists
over a wide range of spacial and temporal scale lengths in astro-
physical, geophysical, and magnetic fusion plasmas [3]. Itis con-
sidered important in the transport processes of these plasmas and
can depend on the ion and electron velocity distributions. Fluid
descriptions of the phenomena require empirical additions to the
equations which are not consistent with the known properties of
the plasmas. Kinetic simulations remain the best way to study
magnetic reconnection, even though it may occur over widths of
tens of Debye lengths and times equal to 1000w,

Plasma processing is an important application of plasmas
where boundaries need to be considered. Plasma processing in-
volves the use of plasmas in the treating of material surfaces for
microelectronic and other industries. There are various ways of
generating the plasma. Among these are inductive reactors which
excite the plasma with inductive fields operating at frequencies
near 10 MHz with sufficient power to generate plasma densities
of n, = 10" cm™ [4]. Typical sizes of these reactors are L = 10
cm. This results in parameters of L. > Ax = 0.1 cm 2 Ap, = 0.005
cmand ¢/Ax =3 X 10" 57" > w,, = 2 X 107" 3 w,. Since
electron collisions are a main source of ionization and other
chemical reactions in the chamber, the electron velocity distribu-
tion has a major impact on the reactor operation. Because the
inductive fields cause heating through both resistive and colli-
sionless processes, the distribution need not be Maxwellian.

B. Long Time Scale Simulation Methods

Over the past 20 years several PIC methods have been devel-
oped to overcome the constraints on explicit electredynamic
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PIC. These methods eliminate selected high frequency plasma
phenomena while retaining long time-scale, kinetic phenomena.
The approaches can be split into two broad categories according
to the way they remove the high frequency, short wavelength
phenomena. The first category works with the original set of
equations and reduces the physics. The set of equations is no
longer hyperbolic for certain sets of waves (usually light waves
and plasma oscillations). The second category works with the
finite difference equations in an implicit form. All of the waves
still exist in the simulation but those which are not resolved
are numerically damped out.

1. Physics Reducrion Methods

The Darwin method is the minimum reduction in Maxwell’s
equations necessary to eliminate the propagation of light waves
[5, 6}. The essence of this radiation free limit is obtained by
ignorimg the solenoidal part of the displacement current in
Ampere’s law. This results in a particle Lagrangian which is
correct to order v?/ct. The set of Darwin equations can be
rewritten in elliptic form. Section IL.B will elaborate on the
form of the equations and their numerical solution.

Significant progress has been made in the numerical imple-
mentation of Darwin for PIC codes, The initial Darwin algo-
rithms decomposed the plasma source terms into an irrotational,
or curl free, part and a solenoidal, or divergence free, part in
order to solve the partial differential equation for the B-field
and solenoidal E-field {6]. This process was both numerically
time consuming and conceptually daunting. In many cases the
boundary conditions needed to solve for the irrotational and
solenaidal parts of the plasma source terms are beyond the
physical insight of the investigator. The derivation of the
streamlined Darwin field (SDF) equations by Hewett and Boyd
removed the need for a decomposition and reformulated the
equation with variables which require relatively simple bound-
ary conditions [2]. However, SDF consists of two strongly
coupled partial differential equations. The linear system due to
the finite differencing of these equations was found to be diffi-
cult to solve. This problem was overcome with the extension
of the iterative matrix solution technique dynamic alternating
direction implicit (DADI) to coupled equations [7].

With these improvements the Darwin equations can be solved
quickly and efficiently in a plasma simulation code. The method
eliminates the CFL constraint on light propagation while re-
taining all kinetic effects for the particles in the radiation free
fields. The Darwin field equations reduce the size of electromag-
netic fluctuations compared to fully electromagnetic codes [6].
This allows the use of fewer particles resulting in a further
increase in computational speed beyond the use of a larger time
step. Unfortunately, for higher density plasmas the constraint
due to w, can be almost as restrictive as the CFL condition.

2. Implicir Methods

Implicit methods achieve stability by including information
from the next time step in the equations for the time advance
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of present quantities. Contributions from previous time steps
may also be retained depending on the amount of numerical
dispersion which is desired or tolerable. If all quantities are
stored on the same grid and the dynamic equations depend on
the local values of grid quantities, the implicit system can be
formulated info a set of simultaneous equations. The solution
of the simultaneous equations gives the grid guantities at the
next time step.

For PIC simulation the situation is more complicated. The
particles have positions and velocities independent of the grid,
and the field equations can be elliptic requiring global solutions
much more involved than a simple relationship to local grid
quantities. For this reason the methods used are actually pre-
dictor—corrector. The source terms (usually p and J) are found
at an intermediate level using the present field values. Equations
for the time advanced fields are derived by expanding the
normal field equations around the arguments at the intermediate
level [8]. Truncating the expansion gives approximate equations
for the time advanced fields in terms of the present fields and
the intermediate level sources. The particles are then pushed
to the next time step by using the time advanced fields. The
estimated fields are not necessarily consistent with final particle
positions and velocities. In principle iterations over the above
steps could be done to improve convergence, but this has not
been found to be necessary [8]. If one did iterate to convergence,
the metheds would be truly implicit. The two approaches to
implicit PIC, the moment method and the direct method, differ
primarily in how the source terms are advanced to the intermedi-
ate level.

In the moment method the source terms to be advanced are
the fluid quantities which have been interpolated to the grid
from the particies. The moment of fiuid equations are vsed to
give the time variation of these quantities, and the terms in the
fluid equations are found from additional accumulations of
particle quantities. The fluid quantities are then advanced to
the intermediate level through a finite difference of the time
derivatives, where the numerical accuracy of advection schemes
can play a role. Initial work with electrostatic codes can be
found in Mason [9] and Denavit [10]. Overviews of mo-
ment method electromagnetic algorithms are in Brackbill and
Forslund [11] and Mason [12].

The direct method avoids the inconsistencies of taking mo-
ments by continuing to work directly with the particles. Both
the particle positions and velocities are moved to the intermedi-
ate level. The particle quantities are then interpolated to the
grid to provide the source terms for the implicit field equations.
This leads to a double push and interpolation of the particle
quantities. Since dealing with the particies can take most of the
cpu time, a computational cost is paid for the greater accuracy of
working directly with the particles. Dispersion characteristics
and grid effects have been thoroughly investigated in several
sources [1, 13]. An overview of the method including electro-
magnetics and energy conservation characteristics can be found
in Langdon and Barnes [8]. Hewett and Langdon [14] and
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Tanaka [13] provide results from fully electromagnetic im-
plicit codes.

These implicit methods provide plasma simulation with large
temporal and spatial discretization while retaining electron ki-
netics. The strength of the implicit scheme is that those phenom-
ena which are not resolved are numerically damped. This be-
comes a constraint when the numerical dispersion cooling
effects and grid heating effects cause significant numerical
changes in total system energy. Energy conservation is achieved
only if Ax and Ar are chosen correctly [14, 16]. The other
limitation to these methods has been finding reasonable bound-
ary conditions for the implicit electromagnetic fields,

3. The Darwin Direct Implicit (DADIPIC) Method

As its name suggests DADIPIC is a combination of the
Darwin and direct implicit methods. The direct implicit algo-
rithm is used only to solve for an implicit electrostatic field.
The SDF equations are used to solve for the solenoidal E-field
and the B-field. The particles are advanced explicitly in time
with respect to the solenoidal E-field and the B-field. As will
be shown in the remainder of this paper, DADIPIC combines
the previously mentioned useful features of these two methods
while eliminating or at least mitigating their constraints. Darwin
is no longer limited by a,. At because of the electrostatic direct
implicit particle advance. Boundary conditions are much sim-
pler since they are applied separately to the implicit electrostatic
field and the SDF equations. The issue of energy nonconserva-
tion also appears to be manageable since fluctuations due to
the electrostatic field are the only culprits,

In the remainder of this paper we present the DADIPIC
algorithm and some tests of its performance. SectionIL A covers
the direct implicit, electrostatic method in the presence of elec-
tromagnetic fields. We discuss the Darwin method in Section
I1.B and dielectrics in I1.C. The steps in the particle integrations
and field solution for the combined algorithm are in Section
ILD. Section III contains the results of the application of
DADIPIC to electron cyclotron waves and collisionless heating
in inductively coupled plasmas.

II. IMPLEMENTATION OF DARWIN DIRECT IMPLICIT
PARTICLE-IN-CELL

Our implementation of DADIPIC results in an algorithm in
which the implicit electrostatic step and the Darwin step each
stand alone. So we will describe the implementation of each
step separately before presenting the combined algorithm.

A. Implicit Electrostatic Method

In this section we describe the particle advance and field
solve necessary to carry out the implicit electrostatic part of
the DADIPIC algorithm.
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1. Particle Integration

The particles are time integrated according to the D1 implicit
scheme [1]. This scheme damps high frequency oscillations
while retaining low frequency oscillations by keeping signifi-
cant contributions from all previous time steps in the electro-
static part of the particle acceleration. The D1 scheme alse
extends the region of energy conservation in Ax/Ay,., w,Af
space as compared to the more time centered C1 scheme [16].
In fact good energy conservation for the D1 scheme was found
when 3v,At/Ax ~ 1. The finite differenced equations take
the form

A Vn+lf2 4 a-112
vn+|.’2 — vn—lﬂ + Atﬁn + q_t fsln] + _z.y__ X Bn
m C

Xn+| =x"+ Atvn+l.'2 (2])

3= [E"‘i + EE;;:‘],
2 m

where E,; is the solenoidal part of the field and E;, is the
irrotational part of the field. Note that a carries only the time
advanced electrostatic field. Unlike other electromagnetic im-
plicit algorithms, the particle push is still explicit with respect
to E,, and B. So a time advanced field solve must only be
found for E;;. This particle push is broken up into two steps
[14]. The first push uses only known quantities to advance v
and X 1o a ~ level, and the ~ guantities are used to estimate
the advanced E,. The predicted E,; is then used to complete
the advance to the n + 1 time step. As mentioned above the
method is a predictor—corrector as opposed to truly implicit,

In these equations the interpolation from particles to the grid
and vice versa is accomplished through shape functions. The
effects of these functions on the simulation have been exten-
sively discussed [17]. The form of the function is S(x; — x;),
where x; is a grid node coordinate and x; is a particle position.
For this code linear shape functions have been used with the
form

Sx—x)=(x+Ax —x)(z+Az—z)/AxAz. (2.2)

Equation (2.2) is for a particle in a cell located in the positive
x and z directions with respect to the grid node. The other
nodes of a cell have similar functions. The sources for the field
equations on the grid are obtained by sums over the particles
in a particular cell of the appropriate particle quantity multiplied
by the shape function. As an example the charge density is

1
P= A AZZ g:S(%; — X))

(2.3)

Note that Eq. (2.1) is implicit with respect to the velocity.
This equation can be reformulated so that the advanced velocity
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is exclusively on the left-hand side [18]. Using tensor notation
the equation becomes

vr:+h‘2 =R". vn—l,f2 + % (I + Rn) .\ (E” + %EZ‘,.), (24)

where 1 1s the identity tensor and R, the rotation due to v X
B, is given by

R" = [(1 — (") - 20" X I + 20°0")/(1 + (@)

(2.3)
O = gB A/ 2mc.
Using the notation of Eq. (2.5), we obtain
F=Rv+ 24 Ry (15" + iEg‘m)
2 2 m
(2.6)
L=x"+ A%
The final positions and velocities are obtained from
vn+].’2 =%+ ov
X" =%+ Ar v
(2.7
BV(x®, X1y = % (L + ROEL (™).

Note that R should be evaluated at x", and E;, should be evalu-
ated at x"*' for Sv. With this scheme v cannot be found until
the advanced E,, is estimated. An approximate field equation
is obtained by taking the first two terms of a Taylor expansion
of the accumulated charge density at time n + 1 about X:

=3 % [S(x, — £) + At dv(x?, X1 - V,S(x, — %) + ...
(2.8)

Noting that the first term is 7, Eq. (2.8) can be rewritten
g = p S LA B X 9,50~ K] (29)

In the second term the gradient can be changed to a derivative
on the grid position and removed from the sum. Several
methods of calculating the remaining sum have been investi-
gated [13, 8]. One of the least computationally intensive and
most stable has been termed simplified differencing [1]. In
simplified differencing R and the E-field are evaluated on
the grid leaving
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TABLE L

Coefficients for the Implicit Field Equation Operator

¢';+u+| dpp (1/4 Ax AZ)(X:-?-IIZJ + X%}»lfz)
Puar CXp (VA + X114 Ax AKX — XD
Dirr 1 dpm —(174 Ax ADXB ny + Xjoin)
1 CZp (1/Azh(1 + XE?+I!2)(1/4 Ax AZ)(X:!JEHZJ‘ - Xi!-%lt‘z,j)
¢ cee =2(1/Ax% + A ~ (VAKX iy + X))

(VAKX e + X5 i)
i czm (VAZY + X510 — (V4 Ax AD(XE v, — XPin))
Dics jas dmp —{l/4 Ax AZ)(X.EUZJ + Xﬂ‘wz)
-y cxm (Lraxh(1 + X! (14 Ax AZ)(X?L}HJZ - X?,_:'—uz)
im1m dmm (U4 Ax AD(XE 0 — X ind

AT 8 4
(2.10)
_AZ w | @GP
X, 4Z(I+Rg)[ms],

where the sum is now over species. The X tensor is easily
formed from the B-field and charge density already stored on
the grid. This differencing provides a significant reduction in
computation since it avoids extra interpolation of particle quan-
tities to the grid and leads to a simpler finite difference field
solution. For instance, in 1D the field solution goes from a
pentadiagonal sclution matrix with strict differencing to a tridia-
gonal solution matrix with simplified differencing. With the
simplified differencing expression for p™*! the field equation be-
comes

V[ + 47X)- V'] = —4mp. @11

Because of the similarity of this equation to the electrostatic
field equation in dielectric media, the X term is usually referred
to as an implicit susceptibility [1].

2. Differencing of the Field Equation and Boundary
Conditions

Simplified differencing is implemented in the code as fol-
lows. In the x—z plane the implicit field equation has the form

[V2 + 47 (V.(X''V, + X1V,) + V(XY + X2V ),
(2.12)
= —dmp.

These terms are finite differenced with second-order accuracy as

I .
Vx(XIIV.r¢u+1) = m [anll.'z.,uﬁb?fll.; + X}llfl,j(;bffll.j

- (quz,j + X;‘I—ll.'z.j) 7t

i

(2.13)

with the other terms having similar expressions. This leads to
a nine-point scheme of coefficients in the solution matrix, A,
for each potential node to be solved. The resulting coefficients
are in Table 1. A is formed with ¢(i, f) ordered in a 1D vector
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as [dyy, oo & mots Prz2y oo & Fonmas -] A is a banded
matrix, and to save on storage only the diagonals with nonzero
compenents are stored by the code. Note that the components
of the X tensor are needed at the half grid point positions.
These are calculated by averaging the densities and B-fields
which are stored at the grid points. As an example X(i — §, j)
generates its rotation tensor from the B-field: BG — 1, ) = 0.5
(B( — 1,j) + BG, j)).

Pertodic, Dirichlet, and Neumann boundary conditions on ¢
are allowed by the code. Periodic boundaries represent an infi-
nite repetition of the simulation region along the periodic direc-
tion. Essentially there is no boundary only a limitation on
maximum wavelength. For periodic boundaries, nodes outside
one of the four bounding walls of the simulation region are the
same as nodes just inside the opposite wall. This moves the
coefficient for that node to a different diagonal in the solution
matrix. As a result the number of diagonals changes for periodic
boundary conditions (15 for periodic, 21 for doubly periodic).
For Dirichlet nodes, such as a conductor where we want to set
a specific potential, the coefficient on the diagonal is set to one,
the other coefficients are set to zero, and the right-hand side is
set to the value of ¢ desired for that node. For Neumann nodes
exterior nodes required by the finite difference template are
found from interior nodes according to

¢

3
—. 2.14
P (2.14)

d’i max+1,j = (bimax—l,j + Ax

The exterior node coefficient is simply added to the interior
node coefficient, and the derivative term is added to the right-
hand side of the matrix equation. This condition is most com-
monly used along axes of symmetry, where 3¢/ dx is set to zero.
Once ¢ 1s calculated, the electric field must be found. For
interior points the gradient of ¢ is used:
EL- = _(¢i'+l,j - (f)i—l‘j)/(zAx)- (2.15)
Conducting boundaries present a unique situation. Under
long time scale conditions a confined plasma will generally
rise to a positive potential with respect to the confining walls.
This potential drop retards the more mobile electrons and accel-
erates the heavier ions causing an equalization of the electron
and ion currents being absorbed by the walls. The resulting
potential sheath is typically large compared to a Debye length,
but may be small compared to the region to be simulated. This
leads us to use different boundary conditions at conducting
boundaries depending on whether a sheath is spatially resolved
or not.
When the sheath is resolved an implicit Gauss’ law is used
to overcome the lack of ¢ values exterior to the conducting
boundary [19]. The integral form of the implicit field equation is

f(1+4WX)E.ﬁdS=4wJ;jdv+ 4n[ads, (2.16)
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FIG. 1. Position of the surfaces for a Ganssian box arcund a node at the
surface of a conducting boundary.

where oris the surface charge density on the conductor. Consider
a conducting wall with surface normal in the positive x direction
and a boundary node at #, j with a Gaussian box around it
located at half grid points as in Fig. 1. The integral on the left-
hand side of Eq. (2.16) can be split over the four surfaces.
Assuming the variables are constant over a surface and are
equal to the value of the variables at the center of the surface,
the integrals are easily evaluated:

fl (L + 47X)E - (—£) dy dz = 0

[0+ 4m0E. @) dx dy = [47X" E*
+ (1 + 47X E, jr1n Ax A,
L (I + 47X)E - () dy dz = [(1 + 4aX"HE* (2.17)
+ 4TXVE i, Ay A,
[, 0+ 4mOR (—2) drdy = —[4mX'Ex
+ (1 + 4nXP)E]; 10 Ax A,
Inside the conducting wall the field is zero so the integral over

surface one is zero. Fields tangent to the equipotential surface
are also zero. Finally at the surface E}; = 47¢ so
a7 j odS = ET, Ay Az 2.18)

Putting all this into Eq. {2.16) we find
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Er = 2mp; Ax + [(1 + 4aXip DEFon; T 40X, Efan,l Az
" [Az + 47 Ax(Xii-1n — Xiand]

(2.19)

Similar expressions are found for walls with surface normais
—i% %, and —3.

When a sheath is not resolved and w,, At is large, Eq. (2.19)
is dominated by X"'. This results in a large, nonphysical electric
field at the conducting surface. Since a sheath is not resolved,
the field at the boundary fluctuates due to the simulation particle
noise. This is the same as the fluctuating electrostatic fields in
the bulk of the plasma, but the anamolously large magnitude
of the boundary field causes excessive numerical heating of
the plasma. To get realistic fields a sheath boundary condition
must be applied which imposes the normal E-field. The field
must be set according to the potential drop calculated from an
analytic sheath model. We are in the process of implementing
such a sheath boundary condition for the code. The results
presented in this paper use a relatively simple sheath model.
The ions are represented as a uniform, stationary positive back-
ground. The potential drop of the sheath is represented by a
boundary condition on the particles as well as the field. An
infinite potential drop in the sheath is implemented by specu-
larly reflecting all of the particles at conducting walls. Since
the potential drop is already represented by particle reflection
the E-field is set to zero at the walls. The result is that the
particles remain in the simulation region instead of being ab-
sorbed, and they are not heated due to anomalously large fluc-
tuating fields at the walls.

3. Numerical Solution of the Field Equation

Given the nine-point stencil for the difference equation and
the large, sparse, nondiagonally dominant matrix, the bi-conju-
gate gradient (BCG) method was chosen to solve the implicit
electrostatic equation. The BCG method is a variation of the
conjugate gradient method applicable to nonsymmetric matri-
ces. The conjugate gradient method is an iterative minimization
of the functional ¢(x) = 0.5x"Ax — x"b [20]. At the minimum
V¢ = Ax — b = 0 so we have solved the matrix equation
Ax = b, In the BCG method two residual and two conjugate
vectors are defined [21]. The method is not guaranteed to con-
verge. For those cases where it does converge, the method is
guaranteed to converge in # iteractions for an n-dimensional
space. In practice a useful solution can usually be obtained in
far fewer than r iterations.

Conjugate gradient schemes converge more rapidly for well-
conditioned matrices. Preconditioning transforms Ax = b into
a well-conditioned system through an incomplete LU decompo-
sition of the matrix A, The sparsity pattern of A is used in
determining which terms in L and ¢/ are calculated thus min-
imizing the computations required to perform the decomposi-
tion. From Anderson er al. [22] the preconditioned system is
Mu = C, where M = LTAU, 4 = Ux, and C = L71h. We
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use the optimized preconditioned bi-conjugate gradient routine
CPDES 2 [22] for nonperiodic and periodic simulations, and
our own version for doubly periodic problems. We have not
had problems with convergence in our simulations.

B. Darwin Method
1. Field Equations

The Darwin limit of Maxwell’s equations is obtained by
dropping the solenoidal part of the displacement current [6]
to obtain

V.E, =41, VXE=_L28
¢ ot
(2.20)
aEll‘I’
V.B=0, VxB——J+'
¢ o’

Using the charge continuity equation, we can replace E.. with
—47];, and rewrite Ampere’s law as

VXB= %T—Jml. 2.21)

Consider E and B in terms of the potentials ¢ and A in the
Coulomb gauge (V-A = O):

B=VxXA
(2.22)

Using these potentials in the Darwin field equations, we find
the following equations for the fields. For the electrostatic po-
tential we find the usual Poisson’s equation

Vigp = —anp. (2.23)
This equation was modified in Section II.A to allow an implicit
particle advance with respect to the electrostatic field. As shown
below, the time advanced E;, can then be used along with the
timme advanced particle quantities to construct a source term for
the E; equation. In a 2D code we use two forms to solve for
the B-field in order to ensure that V-B = 0 and V- A = 0. For
the component of B which is out of the simulation plane, the
¥ component, we can take the curl of Ampere’s law which gives

VB, = - 4717 (V xJ),. (2.24)

Since there is no variation of guantities in the y direction, this
compoenent of B cannot contribute to the divergence of B. The
second equation is obtained by replacing B in Ampere’s law
with its vector potential form. This gives
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47

VA, = — 2 ] (2.25)
: e

Again with no variation in y, A, and J, are automatically solenoi-
dal. Finally combining the two curl equations we find

bk

VE, = = I (2.26)

Now we can utilize the first velocity moment of the Boltzmann
equation, sum over species, and find J in terms of present
particle quantities,

447+
?J:#Eanl-'_#Em-'_é’XB-l-K

(227
= .u'Eso] + Q!
where
w?,
47 = 9
5 > —J (2.28)

4
=-a 2 gV - (vv),.

Putting Eq. (2.27) in terms of a direct accumulation of the
particle quantities [23] produces
Jx) = =g, > v, V;S(x; — x

‘ (2.29)

qf v; X B(x;}
+ (E) 2 S(x; — x;) [E(x,») + T]

$

This solution is implemented since the use of a finite difference
of B or J leads to a problem size limit of less than 2melw, in
order to prevent instability {6]. We now have a set of elliptic
equations that generates instantaneous fields given the time
advanced particle source terms.

The effect of the Darwin approximation is evident in the
change of the solution to the vector potential form of Ampere’s
law. The fully electrodynamic form is

I 9’A 4w

2 —_ = — ——
V A Cz afz ¢ Jxol (2'30)
with the solution
Jax',i—|x—x /c)
Al 1y = [ = - _|x| | 231)
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If the partial derivative with respect to time is dropped in Eq.
(2.30), the solution becomes

sﬂI(X',I) 31

J
A1) = f e (2.32)

It is abvious that retardation effects due to the finite propagation
time of light have been eliminated. In a vacuum light waves
no longer exist.

Linear theory provides the dispersion characteristics of the
Darwin limit in plasma, As expected longitudinal waves, such
as plasma oscillations, are unaffected. However, the absence
of the solenoidal part of the displacement current does have
major consequences for transverse waves. Fast waves (those
with phase velocities larger than ¢) are nonpropagating. For
example, in a Darwin plasma with no imposed fields the disper-
sion relation for transverse waves is —ck? = w, (1 + Zm,/
m;). This results in imaginary k or spacially damped fields. The
magnitude of the effect on slow waves depends on the plasma
characteristics. As discussed by Kaufman and Rostler [24], in
a magnetized plasma (ck/@)humin ~ (Ch/ @R puean — |- S0 Darwin
is best used for those phenomena where transverse wave veloci-
ties as well as particle velocities are significantly less than the
speed of light,

2. Streamlined Darwin Field (SDF) Formulation

Equation (2.26) presents some difficulties in finding its solu-
tion. A computationally intensive vector decomposition of Jis
required to find its solenoidal part, and this can only be done
if we can specify boundary conditions for the decomposition.
In many applications boundary conditions on the irrotational
part of J cannot be determined. Early applications generally
considered problems where boundaries were distant from the
plasma. A uniform plasma with doubly periodic boundaries is
an example of this kind of simulation. Even in this case a slow
iterative process must be used to solve Eq. (2.26) since E,
appears on the right-hand side of the equation. First an expres-
sion for J must be generated, decomposed, and used as the
right-hand side for Eq. (2.26). After solving Eq. (2.26) for E,,,
the process is repeated untii convergence.

Hewett and Boyd derived the streamlined Darwin field (SDF)
formulation to avoid both boundary condition and vector de-
composition problerns [2]. They defined new field quantities as

vy =], (2.33)°
E=E, — Vi (2.34)

Recalling the form of the E.; field equation
VE. = Q+ uFu — o Ji, (2.35)

GIBBONS AND HEWETT

we find two coupled partial differential equations in terms of
E and i,

vE

TRE=QuVy
Vig=-V-E

(2.36)
(2.37)

Many of the previous problems in solving E., have now been
eliminated. A vector decomposition of Q is no longer required
so nonintuitive boundary conditions do not have to be deter-
mined. Equation (2.37) ensures that the solution for E, is in
fact solenoidal. As we shall see in the next section, boundary
conditions on = and  are straightforward and depend on the
boundary conditions on E,.

3. Boundary Conditions on A, B, and By

As with the electrostatic potential, the SDF field solvers in
the code allow periodic, Dirichlet, and Neumann boundary
conditions for A,, B,, and E.,,. While pericdic and symmetric
boundaries require the same conditions for all fields as described
in Section II.A, conducting surfaces impose conditions which
must be applied separately for the different field components.
Since the B-fieid has no divergence and is zero inside a perfect
conductor, the normal component of the field is zero on the
surface of the conductor. To meet this condition A, must be a
constant along the surface of a conductor. Thus we have a
Dirichlet zero boundary condition on A,.

Considering E on a perfectly conducting surface, we find
from Ampere’s law and Gauss’ law that E, = 0 and E, = 4wo
on the surface, where ¢ is for tangential and » is for normal.
From E = ( along the boundary we find a,£% = 0. Since
V-E, = 0, this implies 3,£7 = 0. Given that E,; = 0 inside
the conductor, we have E® = 0 on the surface. The surface
charge must be accounted for by Ej; so £7 = 4no. Thus we
continue to satisfy Gauss’ law with —V¢. This leaves us with
E., = 0 on conductors,

We want boundary conditions on = and ¢ which will enforce
the above condition while still maintaining V-E,, == 0. This
is done with the following set of equations:

{1} For nonboundary and Neumann points, solve the SDF
equations (2.36) and (2.37). For Neumann zero points, require
dfr = 0 and 9,2 = 0.

(2) For conductor interiors set

E=-Vy #=0 (2.38)

We have a simple Dirichlet boundary condition on t while
maintaining E,,; = 0. The divergence of E; remains zero since
E.. is constant everywhere inside the conductor.

(3) For conductor surfaces set

Z=-Vy Vi=-V-E (2.39)
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This ensures that & -+ Vi is solenoidal at the surface of the
conductor. Since & = —V applies only inside and on the
surface of the conductor, the derivative of the equation may
be discontinuous as the interface is crossed. So the divergence
cleaning relation must be explicitly enforced on the surface.

{(4) Driven conductors can be treated in two ways. The first
option is as Dirichlet points, where E, is specified. The second
is as nonboundary points where the driven current density
J5 is added to the appropriate component of Q in each of the
nodes inclusive to the conductor. Since this is an imposed
current density not dependent upon whalt occurs in the simula-
tion, we simply define this current density to be whatever we
want. Since we may choose not to resolve the skin depth of
the conductor with our grid, the current density is set to get
the correct total current given the size of the conductor. This
still leads to reasonably correct fields outside the conductor.

4. Numerical Solution of the SDF Equations

Dynamic alternating direction implicit (DADI} is the method
used to find solutions to the system of finite difference equations
resuiting from SDF. DADI is an iterative, operator-splitting
technique where a fictitious time step is added to the equation
to be solved,

_ 9

Lif,
at s

(2.40)

where L is the operator resulting from the finite difference form
of the original equations. For a discussion of the basic technique
see [25]. lterating Eq. (2.40) to the time-asymptotic state, we
find a solution to Ly = 0. The idea is to split the operator into
pieces which can be easily solved implicitly and to take several
steps to advance o from fictitious time step n# ton + 1. The
splitting can be chosen to ensure convergence of the method
[ 7]. For this case consider a single splitting into the horizontal,
H, and vertical, V, parts of the Laplacian operator,

(—w+ Hm2 = (— = V)" + o

(2.41)
(_w + V)tfj"“ — (_w — H)l!l“”g + a,
where

Hi = (df.‘ﬂ.j - 24’.‘.1 + 'pf‘l.j)jA-xl
V= (¢i.j+1 - Z*Jf.‘.j + ‘fji.jvl)‘lAzzt

(2.42)

Given the form of the operator a simple tridiagonal solve is all
that is necessary for each H or V pass. The subtlety comes in
choosing the size of each time step to maximize the rate at
which we approach the time asymptotic state or, equivalently,
" the rate of convergence. The method used here is due to Doss
and Miller as applied to the Laplacian operator [26]. This
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method is used for the B-field and vector potential, Egs. (2.24)
and (2.25), respectively.

For the SDF equations coupled equation DADI {(CEDADI)
as discussed by Hewett, Larson, and Doss [7] is used. The
horizontal and vertical passes in this case become

H — PASS
(~w+ H-fu)Er"" = (o — V+ 0 - HE:
+ Dyt + O,
(—w+H—fuw)Er" =(—o—V+ (- HwE!+ Q,
(o + H— B2 = (=0 =V + (1 = s
T DY+ O
(~w+ Hy* = (o — Viy* — DE"— D E"
¥V — PASS
(-0 + V- fWEr = (-w - H+ (1~ HwE"
tuDY + O
(o + V= fwEr = (-w = H+ (- HwE"+ g
(—w+V—fuE" =(—o—H+ ({1 — ="
t Dy + O,
(—w+ V)™ = (-0 = Hyy*" — D.EI - DAL,

(2.43)

where

Dol = (er; — -1 )(245)
Doy = (00 — -1/ (242)
O0=f=1.

(2.44)

Note that all of the first-order derivative terms are lagged (evalu-
ated with nth-iteration values). This has been found to be neces-
sary to keep the algorithm stable [7]. This also allows the
continued use of a tridiagonal solve for the implicit terms. The
CEDADI method has been shown to be considerably faster
than biconjugate gradient for this set of equations.

C. Dielectrics

For many problems of interest we need dielectric as well as
conducting structures. Since fields penetrate through dielectrics,
we cannot simply treat them as surfaces with boundary condi-
tions which ignore the interior. For dielectrics Ampere’s law
in the Darwin limit becomes

aDirr
vxB-yylDm

- c o (2.45)

Here I} is the electric displacement which we define as
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D = (1 + 47X,)E, (2.46)
where X, is the dielectric susceptibility. Note that in the plasma
where X, is zero, we have the same equations as the previous
section, So the accuracy for the particle Lagrangian remains
the same.
In the dielectric region we use Gauss’ law
V-D=dnp (2.47)
and the charge continuity equation to replace D, with —4x];,.
Again we can write Ampere’s law as Eq. (2.21). The result is
that the equations for E, and B are unchanged. All the solutions
of the previous section still apply. This is not the case for the
electrostatic field equation where Gauss’ law in terms of the
components of the E-field becomes
V- [(1 +4aX)Ve] ~ V-{drX,E,) = —4dmp. (2.48)
Solving for the electrostatic potential including the direct im-

plicit susceptibility, X;,, we find a new electrostatic field
equation

V-1 +47X,- +4nX V'] = —4ap
+ 4TTE20[ . VXd

(2.49)

This equation introduces a possible stability problem since
the electrostatic and electromagnetic field equations allow an
explicit connection between Ef, and EZi' during a time step.
This should only be a problem in regions where dense plasma
and dielectric meet. In the plasma X is zero so the connection
through the electrostatic equation is removed. In regions of
dielectric and vacuum the wE,;; term is absent from  as defined
by Eq. (2.27). It does not contribute to the SDF equation (2.36);
therefore, there is no contribution to E,. Since we anticipate
treating plasma/wall interfaces with analytic sheath boundary
conditions, the potential region of instability will be eliminated
from the simulation. As a second option for those cases where
E., makes little contribution to Eq. (2.49), the El,- VX, term
could be removed while retaining most of the contribution of
X,. This is true for situations in which E is driven in the
direction perpendicular to the simulation plane, and the only
contributions to E in the plane are plasma fluctuations.

. D. Combined Algorithm and GYMNOS

We can now integrate the field solves of Section H.A and
11.B into a combined algorithm for the time advance of particle
and field quantities. The result is a time cycle of two sets of
the four steps mentioned in Section I. Given initial valoes of
E", B", x2, v/7'2, and a%', we proceed as follows:

I. Advance to ~ level

(1) Interpolate E?,, and B! to particles.
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(2) Push particles to ¥, and &, using Eq. {2.6}.
(3) Interpolate the ¥; and ¥; to the grid to get p, and X;.
(4) Solve the implicit electrostatic field equation (2.49)
to find Ejf/
II. Advance to n +1 level
(la)
(2a) Push particles to v;™" and x;*' using Eq. (2.7} and
evaluating év at X. Save a".

(1b) Interpolate Eif!, Ef,;, and B to particles
(2b) Find vi*! from

Interpolate E}f} and B} to particles

vl = Ryt 4 ‘i—A’ (I +R"-(E5' +EL) (2.50)
n

(3) Interpolate the v/*'andx/*' to the grid to get
ij‘f’l, pjﬂ_'Hrl’ and K,?+I‘

(4) Solve the B-field and SDF equations (2.24), (2.25),
(2.36), and (2.37) to find B/*! and E5}.

Since the solution of the electrostatic and SDF fields are
separated in this algorithm, there is certainly flexibility with
respect to the method used for the implicit electrostatic particle
advance. We have chosen the D1 direct implicit scheme, but
other direct implicit schemes or the moment implicit method
could be substituted with little change to the overall algorithm.

Note that steps (1), (2), and (3) are inside a loop over all
the particles. The steps are completed for one particle before the
next particle is considered. Each particle adds its contribution
individually to the grid source terms in step (3). Also v**' is
not stored for each particle. The advance of one-half a time
step is needed to find J**! and K™, Only the second-order
accurate, leap-frogged v passes through 1o the next time
cycle.

This algorithm has been incorporated into an already existing
2.5D PIC code developed by Hewett called GYMNOS [27].
This magnetostatic code based on elliptic solving algorithms
using DADI is an excellent framework for the DADIPIC algo-
rithm. The code is written in R-Z geometry and has the ability
to generate its own internal structures. Both structure and field
quantities are stored on cell corners. Particles may be perfectly
reflected, fully absorbed, absorbed with a fraction thermally
reemitted, field-emitted, or injected with a prescribed distribu-
tion. The particle pusher is a fully vectorized Boris pusher. The
status of nodes in relation to structures is stored in geometry
arrays. These arrays are needed in the field solve and particle
trapping routines since the handling of nodes in the routines is
controlled with integer switches.

For the implementation of DADIPIC, GYMNOS was con-
verted to XZ geometry. This allowed the investigation of DADI-
PIC in a uniform doubly periodic plasma where comparisons
could be made to analytic kinetic theory for basic test cases. The
two parts of the time cycle in DADIPIC manifest themselves in
the duplication of the routines called during a time step.
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The number of geometry arrays has been increased to allow
different structure types. All nodes in structures are boundary
nodes for the particles. Dielectric structures do not generate
boundary nodes for fields. The grid nodes do have an associated
dielectric susceptibility which is set according to the locations
of the dielectric structures. Before each field solution, node
designators are set with any driven structures removed. As an
example consider a conducting structure which has a driven
current density in the y direction. For the electrostatic field solve
the structure would have Dirichlet nodes at some designated
potential. For the A, solve the structure is not a boundary region,
and the structure nodes have some imposed current density
added to any particle density at each point.

IIE. TEST CASES

In this section we present two test cases to demonstrate the
ability of DADIPIC to simulate electromagnetic phenomena
under conditions of large w,Af and Ax/Ap,.

A. Uniform Plasma: Electron Cyclotron Waves

We investigated electron cyclotron waves to test the algo-
rithm’s ability to simulate low frequency oscillations without
the complications of boundary conditions. These right circularly
polarized waves propagate along the B-field lines in a magne-
tized plasma. The dominant interaction is between the particles
and the electromagnetic (Darwin) fields. The electrostatic field
maintains charge neutrality in the fluctuating but essentially
uniform plasma. Without large density gradients or nonneutral
regions the direct implicit method only serves the function of
allowing us to use large time steps while retaining electron
kinetics. The B-field is chosen so ®,, <€ w,., where «,, is taken
as a positive quantity. This gives a phase velocity much less
than ¢, making the Darwin approximation reasonable. The cold
plasma dispersion relation is [28]

ik
ol

2
Wy

14+ —2
(0, — w)w

(3.1)

In the simulations w./w, = 0.01, the density is 10° cm™3,
and the number of particles per celi is 30. The simulation region
is periodic in both the x and z directions, and the imposed B-
field, B,,, is applied in the z direction, The spacial and temporal
discretization s set so that w,Ar = 20 and Ax/Ap = 70 or
o At = 40 and Ax/Ap, = 140. These parameters are chosen
to satisfy the constraints of resolving the wavelengths, resolving
the frequency, and residing near the energy conserving contour,
3u,At/Ax ~ 1 [16]. The plasma thermal velocities needed to
achieve these constraints are not large enough to make any
observable change in the oscillation frequency from the cold
plasma dispersion relation.

Several simulations both with and without initial perturba-
tions were run. In the first type a wave is initialized in the

241

plasma with the size of the simulation region in the z direction
set to one wavelength. The grid is 64 nodes in z and 8 in x.
Two spacial dimensions are not necessary here, but this does
verify the operation of the 2D field solvers. The relationships
between the perturbed fluid velocities and perturbed fields de-
rived from linear theory are

k(m - wrc) .
B, = v,B,——— [~ sin(kz) — ¥ cos(kz)]
W,
(CI) - wce) - P (32)
E, = v,B,— [— i cos(kz) — J sin{kz)}

i,

e

v, = vy[£sin(kz) + ¥ cos(kz)].

The particles are loaded according to a drifted maxwellian with
the drift velocity having the functional form of Eq. (3.2). To
ensure resolution of v, given the set ratio of Ar and Ax, v, is
set to 0.25v,,. The resulting perturbed B-fields are less than
5% of B,.

The resulting fields verified that the right-hand sides of the
B and E,, equations were derived correctly and that the field
solving routines were calculating the expected solutions. This
also allowed us to determine if particle noise in terms such as
the kinetic energy tensor, K, might cause excessive noise in
the resulting fields. Given the magnitude of v, the fluctuations
in v are not much smaller than the imposed perturbation. As
shown in Fig. 2, the initial fields agree with Eq. (3.2). The
initialized parameters are v, = 1.025 X 10° ¢m/s and
cklw, = 1 which should give field magnitudes of |E,|/B, =
1.7 X 107* and |B|/B, = 0.034. Energy conservation for this
whole group of simulations ranged from 1% to 3% due to
electrostatic fluctuations. The frequency of oscillation was re-
corded for several different initial wavelengths to compare to
the analytic dispersion curve for the real part of the frequency.

The second type of simulation is a uniform, unperturbed
plasma where peaks in the electromagnetic spectral density
indicate the dispersion relation for electron cyclotron waves.
The fourier transform in space and time is recorded for
Bi(k,, w). A square 32 X 32 grid is used in this case. The

“results of both types of simulations agree with the analytic

dispersion relation as indicated by Fig. 3.

In the warm plasma the particles see the Doppler shifted
frequency of the wave, @ = w — vk, where v Is the particle
velocity along the B-field. When the force on the particles due
to the transverse E-field varies in time near the gyrofrequency
of the particles, w,, a resonant interation between the wave
and the particles occurs, providing a kinetic test for DADIPIC.
However, to get the correct damping, the distribution function
near (@ — wo,}Vkv, must be well resolved. Unfortunately,
damping which is smaller than the oscillation frequency occurs
when the resonance is with particles far out in the tail of the
distribution. To overcome this we set up a plasma with two
negative species. The first is a dense, cold species which deter-
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FIG. 2. The grid velocity, v,. and the generated fields, B, and E,,,
for an electron cyclotron wave initialized in the particle distribution of a
DADIPIC simulation.

mines the real part of the frequency. The second is a sparse,
hot species which determines the damping. The dispersion rela-
tion for the warm plasma becomes [29]

2
wpe.mldw (

(m('e,mld - w)w

2
(CU - mrc.mld)
— 2
. I \/& wpe.coldm exp |:_ ((d wre.culd) :|
2
2 kAIJe.cold z(kvfhe.c)
2
wp(',hulw

- (1 + kQUtzhf‘hul )
(@eehy — W (@ — Wepa)’
. J; (’-’.l:w,hol':‘-J [ (ﬂ) - wce,hot)z] _
—i jz——exp|-——7|=0
2 kADmhul z(kurhf.hm)z
The plasma parameters are chosen so only the second, third,
and sixth terms contribute. The second species with its low
density can be set to cause small damping while its particles
are near resonance. In this way there are sufficient PIC particles
in the desired region of the distribution. The simulations are
1D so electrostatic fluctuations exist only parallel to the B-

field. The cold species has a temperature parallel to the B-field
50 Ax/Apecaa 20d @, Al can be set to prevent heating due to

w'z — c2k2 _

2,2
KU e coa )

(3.3)
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FIG. 3. Electron cyclotron wave dispersion relation for the real part of
the frequency. The solid line is the analytic result for the cold magnetoplasma.
The points are the DADIPIC results. The error bars are the fwhm of the peaks
in the FFTs.

the electrostatic fluctuations. The temperature perpendicular to
the B-field is very low so v; can dump significantly before
being swamped by thermal noise. The plasma parameters are
shown in Table 1. The damping was varied in several simula-
tions by changing the mass and temperature of the hot species
while maintaining v, . constant. This allows us to change the
damping and continue to resolve Upepu-

Figure 4 shows the time histories from a simulation where
the hot species mass was two n,. The B-field recorded at a
point (Fig. 4a) is a damped sinusoid as expected. An exponential
curve fit to the B-field energy time history (Fig. 4b) provides
the estimate to the damping. There is an initial jump in the
total system energy (Fig. 4¢) of about 1% as the initial load of
particles relaxes. Over the rest of the simulation the damping
of the electron cyclotron wave and electrostatic fluctuations
have little effect on the total system energy. Note that the

TABLE 1l

Plasma Parameters for Electron Cyclotron Wave Damping

Wpecals A = 4} AxlApecaq = 140 Neig = 64
kit = 0.6 U1/ Vecon = 0.014
ng =1 % 10% em™ s = 0.98 1, Mg = 0.02 1,

Traa = 0.683 eV
Weegold = U-Olmpe,cn]d

T = 40l Mo ool

Oeper = (Mool Mot J e, colg
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FIG. 4. The time evolution of an electron cyclotron wave simulation (a)
the oscillating B-field, (b) the B-field energy with an exponential curve fit,
and (c) the change in the total system energy normalized to the initial total
system energy.

energy time histories do not include the energy of the applied B-
field. The damping observed in several simulations is compared
with the damping derived from Eq. (3.3) in Fig. 5. The damping
becomes largest near m,/m, = 4 since the osciltation frequency
matches the cyclotron frequency of the hot species. The
agreement between DADIPIC and theory is very good over an
order of magnitude change in damping rate.

B. Collisionless Heating in Inductively Coupled
Plasma Sources

Over the past few years the microelectronics industry has
made extensive use of plasmas for etching and deposition on
chips. Inductively coupled plasma, ICP, sources have recently
been shown to possess promising characteristics [4]. In ICP
sources an antenna is current-driven, producing mainly induc-
tive fields. It is separated from the plasma by a dielectric.
Electrens accelerated in the inductive fields undergo ionizing
collisions with the neutral etching gas in the reactor thus gener-
ating and maintaining the plasma. The oscillation of the elec-
trons in the fields coupled with collisions heats the electrons.
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Heating is one of the processes which determines plasma den-
sity, uniformity, and other factors critical for successful etching
or deposition. The typical components of a reactor are shown
in Fig. 7.

As with any confined plasma, the plasma rises to a positive
potential with respect to the walls. This retards the more mobile
electrons, allowing the net current to the walls to be zero, lons,
which accelerate across the potential sheath to the chip, may
be used for either etching or deposition. A potential different
than the wall potential may be applied to the chip, controlling
the ion current and ion energy. Unlike capacitive reactors this
potential can be completely unrelated to plasma generation.
This allows an extra adjustable parameter to achieve the desired
ion energy and reduces the capacitive fields in the reactor which
might damage the chip. These reactors are typically run at
densities around 10! ¢m™, a driving frequency of about 10
MHz, neutral pressures of a few mTorr, and electron tempera-
tures of a few eV. The result is an electron-neutral collision
frequency, v, which may be less than the driven frequency, w.
In such cases collisionless heating of the electrons may be as
important as resistive heating.

The phenomena of collisionless heating in the ECP is basically
the same as that of the anomalous skin effect in metals. Elec-
trons in the conducting medium pass through the skin depth,
&, for EM field penetration and are stocastically heated. Heating
is significant for those electrons which reside in the field region
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FIG. 5. Electron cyclotron wave damping rate as the hot species mass is
changed. The solid line is the analytic damping, and the dots are damping
rates measared from DADIPIC simulations. The simulations were all initialized
with the same wavelength, ck/w, = 0.6.
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for a time short compared to the field oscillation period or
v, <€ w™!, These electrons receive a transverse kick since the
inductive E-field remains in one direction over the time of the
electron transit of the skin depth. Reuter and Sondheimer de-
rived the 1D kinetic theory for the effect in metals [30] while
recently Batchelor er al. have made the changes necessary for
the plasma case [31]. The theory assumes a harmonic electro-
magnetic wave normally incident on a half-infinite uniform
conducting region. Maxwell’s equations, along with the linear-
ized Boltzmann equation for the perturbed electron distribution
function, can be solved to find the surface impedance which is
proportional to the ratio of the E-field to the B-field. Assuming
spacial variation in x and a transverse wave with E, and B,,
the result at the plasma surface is

E_ \/_w”' f / - (t))
B, mweli+ viw)y o — iv Im)3 3.4)
‘\/_lvm '
nc(: + viw)

v is the electron-neutral collision frequency and 8 is the square
of the distance that a thermal electron travels in an rf cycle
divided by the cellisiontess skin-depth or

_ 4 (vap’
B‘%(wc)'

K(#) is a function dependent on the unperturbed electron veloc-
ity distribution function. For a Maxwellian plasma we have

(3.3)

2xe™

K= J’: dx [(1+ () tan™(xt) — xt].  (3.6)

We can solve Eq. (3.4) numerically for small » to find
E,/B, in the collisionless limit. It is more convenient to consider
the integral / which depends on the dimensionless parameter
B without the proportionality to a particular v, . Figure 6 shows
the real and imaginary parts of [ versus B. Note that at small
B Rel{l} < Im{f}. The effective resistivity is small compared
to the inductance, and the electrons simply oscillate in the
field without gaining net energy. As 3 increases the resistive
" component accounts for a progressively larger proportion of
the total surface impedance. From the surface impedance and
the magnitude of fields we can find the power deposition in
the plasma using the Poynting vector
c Eo
< ref2 ]

S, = - R 3.7

where the negative x direction is into the plasma.
A number of 1D simulations compare DADIPIC’s ability to
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- FIG. 6. One-dimensional collisionless heating results in terms of the real
and imaginary parts of [ vs # in the collisionless limit. At the surface of the
plasma E,/B, = 8"yulimc, and B is the square of the distance traveled by a
thermal electron in an rf cycle divided by the collisionless skin depth. The
dots are the results of 1D DADIPIC simulations.

reproduce the above analytic results. Our simulations are similar
to those of Turner [32], Conducting walls are placed at the
minimum and maximum boundaries in x. Electrons are specu-
larly reflected off of the walls while ions are defined as a
stationary neutralizing background. The electron particle num-
ber is 16384 and the temperature is 3.75 eV. The total problem
length is 14 cm with Ax of 0.14 cm. Ax is chosen to give
reasonable resolution of the skin depth which is around 1.5 cm
for these simulations. A time-harmonic, solenoidal E-field is
imposed on the wall at x maximum. While Turner investigated
the relative importance of collisionless heating with respect to
collisional heating, our interest is the change of the surface
impedance for a collisiontess plasma versus 8. To vary S8
between simulations we changed both the plasma density,
10" cm™ to 3 X 10" ¢cm™, and the frequency of the imposed
E-field, 3.33 MHz to 20 MHz. These densities and frequencies
are typical of those in actual plasma processing reactors. The
spatial and temporal discretization for the 10" cm™ density is
Ax/Ap = 31 and @, Ar = 9.

Amongst the quantities measured were E and B, at the
driven wall as well as the change in the total thermal energy
of the clectrons, AE,. With this information we can find the
components of / resulting from the simulations with their vari-
ous f3’s. The real part is

me ST(AE/TA)

Reyl} =
e{} ‘\/gvm CIBZ|2

(3.8)
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T is the time over which AE,, is measured and A is the effective
surface area of the driven wall, 0.14 cm®. The magnitudes of
EY and B,, along with Re{f}, give Im{/},

_f_me BN L
Imf{l} = \/(\/gv,h ﬁfl) Re{l}.

The results for the simulations appear as dots in Fig. 6. The
results for both the imaginary and real parts of I are within 5%
to 20% of the analytic solution over an order of magnitude
change in 8. These results are not in perfect agreement, but
the discrepancy appears correctable with finer resolution in the
simulations. Calculations with 4096 particles consistently had
heating which was low by up to a factor of 2. More particles
corrected this problem except for the small 8 case, 8 = 0.33.
Here only the particles in the tail of the distribution participate
effectively in the heating, and this part of the distribution may
still not be sufficiently represented. More particles also decrease
the numerical heating/cooling due to fluciuations.

Though the numerical heating is small, <{1%, the inductive
heating is enly about 10% of the total initial particle energy.
In order to account for the numerical heating, we measured
numericat heating in simulations without driven inductive fields
but with all other parameters the same as simulations with
driven fields. The amount of numerical heating or cooling was
then subtracted or added to the inductive heating results. This
is only an approximate correction since the rate of nuomerical
heating changes as the total thermal energy changes. Other
improvements to the simulations would be finer resolution of
the skin depth and a longer simulation region to better approxi-
mate a half infinite plasma, Even though better agreement may
be possible, we are encouraged by the accuracy of these simula-
tions using only modest resolution. The resolution presented
above is typical of each direction in 2D simulations given finite
computer resources. This gives us confidence that DADIPIC
can correctly predict the anomalous skin effect in more convo-
luted 2D geometries, where analytic theory cannot be applied.

An idealized 2D ICP reactor that we simulated to observe
collisionless heating effects is shown in Fig. 7. The region to
the left is the plasma. The electrons are particles while the tons
are represented as a uniform, stationary background of positive
charge. The same sheath boundary cendition as used in the 1D
simulations confines the electrons. The four bounding walls of
the reactor are conductors, The two internal structures on the
right are current driven antennas. The structure between the
antennas and the plasma is a dielectric. The driven structures
have peak currents in each of 13 A which oscillated at a fre-
quency of 10 MHz, The plasma density is 10! em™, and the
temperature is 4.65 eV. With Ar = 0.5 ns and Ax = 0.14 cm,
we have w,Ar = 8.9 and Ax/Ap, = 27.6. These values were
chosen after we made short simulations without driven fields
which bracketed the numerical energy conserving contour.

Figure 7a shows the structures of the reactor with contours

(3.9}
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of £, at its maximum superimposed. E, ., peaks between the
driven antennas and falls off due to the conducting walls and
the plasma. E, . drives a J, in the plasma as evidenced by the
circular pattern of the B-field vectors in Fig. 7b. As with the
1D runs the kinetic energy of the electrons increased due to
collisionless heating (Fig. 7¢). For these plasma parameters 8
is 1.65 which gives ||E||/|B.] = 3.6 X 107* from the analytic
theory. At the center of the dielectric window on the plasma
side, ||E,| = 8 % 107" and ||B.| = 3.3 which gives ||E,|l/|B,|| =
2.4 X 1073 showing some effect of the 2D geometry. However,
it is the power density into the plasma that is greatly affected
in 2D. From analytic theory it is 5.8 X 10° erg/cm? s while
the measured power divided by the area of the dielectric window
gives 4.2 X 10° erg/em?® s. The differences occur because of
the decrease in E; near the bounding conducting walls in z
and the finite extent of the plasma in x.

An interesting feature of the electron heating in both 1D and
2D is that a significant amount of heating occurs in v, as well
as u,. In fact, almost all of the heating in the 2D case occurred
in the v, and v, distributions. Given the small magnitude of E
in comparison to B,, the force on a thermal electron due to the
B-field is the same order of magnitude as the force due to the
E-field. Thus heating in v, due to E, is converted to changes
in v, and v, . In a future publication we shall expand upon these
cursory ICP collisionless heating results. For this introduction
to the DADIPIC method we have shown the ability of DADIPIC
to replicate 1D} analytic results and to go beyond such theory
to 2D geometries with conducting and dielectric structures.

IV. CONCLUSION AND FUTURE WORK

Darwin direct implicit particle-in-cell (DADIPIC) is a combi-
nation of the Darwin and direct implicit methods which elimi-
nates the cAx/At < 1 and @, At < 2 constraints on kinetic
plasma simulation. The Darwin method is applied with the
streamnlined Darwin field (SDF) equations which give the B-
field and solenoidal part of the E-field. The SDF equations are
solved numerically using coupled equation DADI. The direct
implicit method provides an implicit advance of the particles
with respect to the electrostatic field. This separation of the
field equations has several advantages. The elliptic equations
depend only on present particle quantities. Changes in the fields
only occur with changes in particle positions and velocities or
changes in the boundary conditions. These global field solves
tend to decrease the noise in the fields dve to the finite number
of simulation particles. Boundary conditions also become quite
straightforward allowing us to include conducting and dielectric
structures in the code. Energy conservation is taken care
of by ensuring that the electrostatic fluctuation fields do not
cause numerical heating or cooling. The D1 implicit scheme
conserves energy for large w,Ar and Ax/A, as long as
JvuAriAx ~ 1.

We presented results for low frequency plasma phenomena
showing the ability of DADIPIC to get accurate results with
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FIG. 7. Results of a 2D ICP simulation (a} particle plot with internal structures and contours of E,, at its peak, (b) B-field vector plot at the time of the
peak of E.., and (c} time history of the particle kinetic energy showing collisionless heating.

large spatial and temporal discretization. Periodic simulations
of electron cyclotron waves provided a test of the field solution
and particle push routines without the complications of bound-
ary conditions. DADIPIC correctly simulates small amplitude
waves as evidenced by the agreement with analytic theory for
the form of the fields and the frequency of oscillation. Kinetic
phenomena such as damping is also reproduced in agreement
with analytic theory as long as there are sufficient numbers of
simulation particles to represent the relevant part of the velocity
distribution, The second example, collisionless heating in ICPs,
highlights the method’s capability to model bounded plasmas.
The agreement with 1D kinetic theory gives us an idea of the

resolution needed for 2D simulations. In 2D we have simulated
an idealized plasma processing reactor including a dielectric
window and current driven antenna structures. With the algo-
rithm adapted to a code which allows arbitrary 2D structures,
DADIPIC has the potential to simulate a wide range of bounded
or vnbounded low frequency, kinetic plasmas.

In the near term we intend to use DADIPIC in the simulation
of ICPs and other collisional bounded plasmas. To accomplish
this goal, work is in progress to add capabilities to the present
algorithm. Collisions will be added through the use of particle-
in-cell with Monte Carlo collisions (PIC-MCC) techniques [33].
We are also developing a boundary condition to model! the
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unresolved plasma sheaths near bounding walls. In a publication
to follow, we shall further expand on spatial and temporal
discretization effects on DADIPIC. Our intent here was to
present the details of our melding of the Darwin and direct
implicit methods: the steps in the time advance of the particles,
the field equations to be solved, and the numerical methods
used to solve the field equations.
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